This blog contains experience gained over the years of implementing (and de-implementing) large scale IT applications/software.

Uplifting & Expanding Linux LVM Managed Disks in Azure

One of the great things about public cloud, is the potential to simply increase the data disk space for your systems.
In the on-premise, non-virtualised world, you would have needed to physically add more disk or swap the disk for a bigger unit.
Even in the on-premise virtualised world, you may have needed more actual disk to expand the virtual hard disk.

Sometimes those disks can be storing data files for databases.
In which case, if you have followed the Azure architecture best practices, then you will be using LVM or some other volume management layer on top of the raw disk device. This will give you more flexibility and performance (through striping).

In this guide I show how to increase the disk size by uplifting the data disks in Azure, then resizing the disk devices in Linux, allowing us eventually to grow the XFS file system to a larger size.
I will discuss good reasons to uplift vs adding extra data disks.

My Initial Setup

In this step-by-step, we will be using Linux (SUSE Enterprise Linux Server 12) with LVM as our volume management software.
The assumption is that you have already created your data disks (2 of them) and striped across those disks with a single logical volume.
(Remember, the striping gives you double the IOPS when reading/writing the data to/from the disks).

In my simple example, I used the following the create my LVM setup:

  1. Add 2x data disks of size 128GB (I used 2x S10) to a VM running SLES 12 using the Azure Portal.
  2. Create the physical volumes (mine were sdd and sde on LUNs 1 and 2):
    pvcreate /dev/sdd
    pvcreate /dev/sde

  3. Create the volume group:
    vgcreate volTMP /dev/sdd /dev/sde
  4. Create the striped logical volume using all the space:
    lvcreate -l +100%FREE volTMP/lvTMP1
  5. Create the file system using XFS:
    mkfs.xfs /dev/mapper/volTMP-lvTMP1
  6. Mount the file system to a new mount point:
    mkdir /BIGSTRIPEDDISK
    mount /dev/mapper/volTMP-lvTMP1 /BIGSTRIPEDDISK

In Azure my setup looked like the below (I already had 1 data disk, so I added 2 more):

In the VM, we can see the file system is mounted and has a size of 256GB (2x 128GB disks):

You can double check the striping using the lvdisplay command with “-m” flag:

Once the disk was setup, I then created a simple text file with ASCII text inside:

I also used “dd” to create a large 255GB file (leaving 1GB free):

dd if=/dev/zero of=./mybigfile.data bs=1024k count=261120

The disk usage is now close to 100%:

I ran a checksum on the large file:

Value is: 3494419206

With the checksum completed (it took a few minutes), I now have a way of checking that my file is the same before/after the disk resize, plus the cksum tool will force reading of the whole file (checking for filesystem I/O issues).

Increasing the Data Disk Size

Within the Azure portal, we first need to stop the VM:

Once stopped, we can go to each of the two data disks and uplift from an S10 (in my example) to an S15 (256GB):

We can now start the VM up again:

When the VM is running again, we can log in and check.
Our file system is the same size:

We check with the LVM command “pvdisplay” to display one of the physical disks, and we can see that the size has not changed, it is still 128GB:

We need to make LVM re-scan the disk to make it aware of the new increased size. We use the pvresize command:

Re-checking the disk using pvdisplay, and we can see it has increased to 256GB in size:

We do the same for the /dev/sde disk:

Once the physical disks are resized (in the eyes of LVM), we can now check the volume group:

We have now got 256GB of free space (see row: “Free PE / Size”) in our volume group.

To allow our file system to get this space, the logical volume within the volume group needs to be expanded into the free space.
We use the lvresize command to make our logical volume use all free space in the volume group “+100%FREE”:

NOTE: It is also possible to specify an exact size should you want to be specific.

Our file system is still only 256GB in size, until we resize it.
For XFS file systems, we use the xfs_growfs command as follows:

Checking the file system now, shows we have 512GB of free space (50% free):

Are my files still present? Yes:

Let’s check the contents of my text file:

Finally, I validate that my big data file has not been corrupted:

Value is: 3494419206

What is the Alternative to Uplifting?

Instead of uplifting the existing data disks, it is possible to increase the amount of storage in my volume group, by adding two new additional disks.
To prevent performance issues, these new disks should be of the same scale level (S10) as the existing disks.
You should definitely not be mixing disk types in a logical volume, so to prevent this, you should not mix them in a volume group (even though you could technically separate them at the logical volume level).

Is there a good reason when to add more disks? When you are going to create a new logical volume, it is ideal to keep the data on separate physical disks to help avoid data-loss (from a lost/deleted disk).
There are also performance reasons to have additional Linux devices, since parameters such as queue depth affect the Linux device level. The Linux O/S can effectively issue more simultaneous read requests since additional data disks are additional devices.

As we have seen, uplifting a disk tier, you will need to take the VM offline or detach the disk. Adding additional new disks on the other hand, you can do this all online. Adding new disks does pose a slight issue if you have one large logical volume with striping, since any new disk quantity needs to match the existing stripe layout (e.g. if you have 2 disks striped, you should add another 2 disks to increase the volume), and the striping balance will only ever be over the quantity of disks in the original striping, not over the new quantity of disks (e.g. striped over 2 disks, even if you have added another 2 to make 4).

Is there a good reason when to not add more disks? When you know you could exceed the VM data disk count limitations. Each VM has a limit, the bigger the VM, the bigger the limit.

When you know that you always leave a small proportion of disk space free. Adding more disks which will only ever be max 80% used, is more wasteful compared to upscaling an existing set of disks which will only ever be 80% used.

Summary

Using the power of Azure, we have increased the data disk sizes of our VM.
The increase needed the VM to be stopped and started again while the disks were uplifted from an S10 (128GB) to an S15 (256GB).

Once uplifted, we had to make LVM aware of the new disk sizes by using the pvresize command, then the free space in the volume group was given to the logical volume and finally the file system was grown.
To maintain the logical volume stripe, both disks were uplifted, then both disks needed the pvresize command running.
We validated the before and after state of our ASCII and data files and they were not corrupted.

Finally, we looked at the alternative to uplifting and saw that uplifting may not be appropriate in all cases.
Adding new disks can be done online.

Cleaning Up /tmp for SAP On SLES On Azure

In an Azure SLES 12 Linux VM the default installation image mounts the /tmp file system as a regular file system off the root (/). Historically, for many Unix/Linux environments, this is not “normal”.

In this post I will discuss what the impact is for this irregular setup of /tmp and what you can do to work around it, ensuring SAP continues to work as usual.

What is “Normal”?

In traditional Linux installations the /tmp file system is usually mounted as a temporary file system (tmpfs), which means it would be cleaned on O/S reboot.
This has been the case for many years. There’s a recent post here that highlights 1994 for Solaris.
Plus, you can find a detailed explanation of tmpfs here: https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

With the default SLES setup, any files placed into /tmp will not be automatically be cleaned up on reboot and as per the previous links, there can be performance reasons to use a tmpfs.

From memory, there are differing standards on what /tmp should be used for (again see here), and it is possible that the traditional setup is no longer following a newly agreed standard. I really am not certain why SLES does not mount /tmp as tmpfs.
All I know from over 20 years of working with different Unix/Linux products, is that it is generally accepted that /tmp is a dumping ground, that gets cleaned on reboot and from what I can see, SAP think the same.

What is the Impact of /tmp Not Being tmpfs?

When you have /tmp and it is not cleaned on reboot and is not a tmpfs, then it can cause issues when using software that expects some form of clean up to be performed.
When I look at some of the SAP systems in Azure on SLES 12, I see a build up of files in the /tmp directory, which results in the need for a scripted job to clean them up on a periodic cycle.

If some of the more prolific files are not cleaned up regularly, then they can build up into many thousands of files. While this shouldn’t impact the day-to-day running of the SAP system, it can impact some ad-hoc operations such as patching the SAP system or the database.
The reason is that sometimes the patching tools write out files to the /tmp area, then crudely perform a “ls” to list files or find files in that location. If there are many thousands of files, then those listing operations can fail or be delayed.
A perfect example is the patching of the SAP ASE database, which can be affected by thousands of files in the /tmp location.

Finally, with the /tmp directory mounted off the root disk, any filling of /tmp will fill your root disk and this will bring your VM to a halt pretty quickly! Be careful!

What Sort of Files Exists in /tmp ?

In the list below, I am looking specifically at SAP related files and some files that are culprits for building up in the /tmp directory.

File Name PatternDescription
.saphostagent_nnnnnSAP Host Agent run files.
.sapicmnnnSAP ICM run file.
.sapstartsrv##_sapstartsrv.logSAP Instance Agent run file.
.sapstreamnnnnSAP IPC files.
.theagentlives.tmpOwned by Sybase O/S user, is related to SAP ASE instance. Maybe JS Agent.
ctisql_*Temporary iSQL executions using sybctrl.
sap_jvm_nnnn_nnnnnn
sapjvm_profiling_server_nnnn_nnnnn
sap_jvm_monitoringboard_nnnn_nnnnn
SAP JVM execution.
sapinst_instdirFrom an execution of SWPM (contains sapinst).
saplg*Owned by sapadm and are part of the SAP Instance Agent logon ticket generated from the Hostagent.
sb*From an ASE installation.
tmp*Owned by root, lots and lots, possibly Azure agent related as they contain the text “Windows Azure CRP Certificate Generator” when passed through a base64 decoder.
tmp.*Lots and lots, seem to be Kerberos related.

How Can We Clean Up these Files?

The most common way is to use a script.
Within the script will be a “find” statement, which finds the specific files and removes each one.
It needs to be done this way, because if there are too many files, then trying to do “rm /tmp/tmp*” will exceed the number of lines in the shell space for globbing and it will either error or produce no output at all and no files will be removed.

The script will need to be executed as root frequently (maybe weekly or even daily) to ensure that the file quantities are kept consistently low. This can be achieved using an enterprise scheduler or a crontab on each server.

Here’s an example of how to clean up the /tmp/tmp* files with a very specific criteria. The files are removed if they are:

  • located in the /tmp directory
  • with a name length of at least 7 chars beginning with ‘tmp’ followed by A-z or 0-9 at least 4 times.
  • last modified more than 7 days ago.
  • owned by root, with a group of root.
find /tmp -type 'f' -regextype posix-awk -regex '/tmp/tmp[A-z0-9]{4,} -mtime +7 -user root -group root -delete -print

The above will remove the files due to the “-delete”. To test it, just remove the “-delete”.

In summary, you should check how /tmp is setup in your VMs, and then check the files that are created in /tmp.

Best Disk Topology for SAP ASE Databases on Azure

Maybe you are considering migration of on-premise SAP ASE databases to Microsoft Azure, or you may be considering migrating from your existing database vendor to SAP ASE on Azure.
Either way, you will benefit from understanding a good, practical disk topology for SAP ASE on Azure.

In this post, I show how you can optimise use of the SAP ASE, Linux and Azure technical layers to provide a balanced approach to disk use, considering both performance and disk (ASE device) management.

The Different Layers

In an ASE on Linux on Azure (IaaS) setup, you have the following layers:

  • Azure Storage Services
  • Azure Data Disk Cache Settings
  • Linux Physical Disks
  • Linux Logical Volumes
  • Linux File Systems
  • ASE Database Data Devices
  • ASE Instance

Each layer has different options around tuning and setup, which I will highlight below.

Azure Storage Services

Starting at the bottom of the diagram we need to consider the Azure Disk Storage that we wish to use.
There are 2 design considerations here:

  • size of disk space required.
  • performance of disk device.

For performance, you are more than likely tied by the SAP requirements for running SAP on Azure.
Currently these require a minimum of Premium SSD storage, since it provides a guaranteed SLA. However, as of June 2020, Standard SSD was also given an SLA by Microsoft, potentially paving the way for cheaper disk (when certified by SAP) provided that it meets your SLA expectations.

Generally, the size of disk determines the performance (IOPS and MBps), but this can also be influenced by the quantity of data disk devices.
For example, by using 2 data disks striped together you can double the available IOPS. The IOPS are an important factor for databases, especially on high throughput database systems.

When considering multiple data disks, you also need to remember that each VM has limitations. There is a VM level IOPS limit, a VM level throughput limit (megabytes per second) plus a limit to the number of data disks that can be attached. These limit values are different for different Azure VM types.

Also remember that in Linux, each disk device has its own set of queues and buffers. Making use of multiple Linux disk devices (which translates directly to the number of Azure data disks) usually means better performance.

Essentials:

  • Choose minimum of Premium SSD (until Standard SSD is supported by SAP).
  • Spread database space requirements over multiple data disks.
  • Be aware of the VM level limits.

Azure Data Disk Cache Settings

Correct configuration of the Azure data disk cache settings on the Azure VM can help with performance and is an easy step to complete.
I have already documented the best practice Azure Disk Cache settings for ASE on Azure in a previous post.

Essentials:

  • Correctly set Azure VM disk cache settings on Azure data disks at the point of creation.

Use LVM For Managing Disks

Always use a logical volume manager, instead of formatting the Linux physical disk devices directly.
This allows the most flexibility for growing, shrinking and striping the disks for size and performance.

You should stripe the data logical volumes with a minimum of 2 physical disks and a maximum stripe size of 128KB (test it!). This fits within the window of testing that Microsoft have performed in order to achieve the designated IOPS for the underlying disk. It’s also the maximum size that ASE will read at. Depending on your DB read/write profile, you may choose a smaller stripe size such as 64KB, but it depends on the amount of Large I/O and pre-fetch. When reading the Microsoft documents, consider ASE to be the same as MS SQL Server (they are are from the same code lineage).

Stripe the transaction log logical volume(s) with a smaller stripe size, maybe start at 32KB and go lower but test it (remember HANA is 2KB stripe size for log volumes, but HANA uses Azure WriteAccelerator).

Essentials:

  • Use LVM to create volume groups and logical volumes.
  • Stipe the data logical volumes with (max) 128KB stripe size & test it.

Use XFS File System

You can essentially choose to use your preferred file system format; there are no restrictions – see note 405827.
However, if you already run or are planning to run HANA databases in your landscape, then choosing XFS for ASE will make your landscape architecture simpler, because HANA is recommended to run on an XFS file system (when on local disk) on Linux; again see SAP note 405827.

Where possible you will need to explicitly disable any Linux file system write barrier caching, because Azure will be handling the caching for you.
In SUSE Linux this is the “nobarrier” setting on the mount options of the XFS partition and for EXT4 partitions it is option “barrier=0”.

Essentials:

  • Choose disk file system wisely.
  • Disable write barriers.

Correctly Partition ASE

For SAP ASE, you should segregate the disk partitions of the database to avoid certain system specific databases or logging areas, from filling other disk locations and causing a general database system crash.

If you are using database replication (maybe SAP Replication Server a.k.a HADR for ASE), then you will have additional replication queue disk requirements, which should also be segregated.

A simple but flexible example layout is:

Volume
Group
Logical
Volume
Mount PointDescription
vg_aselv_ase<SID>/sybase/<SID>For ASE binaries
vg_sapdatalv_sapdata<SID>_1./sapdata_1One for each ASE device for SAP SID database.
vg_saploglv_saplog<SID>_1./saplog_1One for each log device for SAP SID database.
vg_asedatalv_asesec<SID>./sybsecurityASE security database.
lv_asesyst<SID>./sybsystemASE system databases (master, sybmgmtdb).
lv_saptemp<SID>./saptempThe SAP SID temp database.
lv_asetemp<SID>./sybtempThe ASE temp database.
lv_asediag<SID>./sapdiagThe ASE saptools database.
vg_asehadrlv_repdata<SID>./repdataThe HADR queue location.
vg_backupslv_backups<SID>./backupsDisk backup location.

The above will allow each disk partition usage type to be separately expanded, but more importantly, it allows specific Azure data disk cache settings to be applied to the right locations.
For instance, you can use read-write caching on the vg_ase volume group disks, because that location is only for storing binaries, text logs and config files for the ASE instance. The vg_asedata contains all the small ASE system databases, which will not use too much space, but could still benefit from read caching on the data disks.

TIP: Depending on the size of your database, you may decide to also separate the saptemp database into its own volume group. If you use HADR you may benefit from doing this.

You may not need the backups disk area if you are using a backup utility, but you may benefit from a scratch area of disk for system copies or emergency dumps.

You should choose a good naming standard for volume groups and logical volumes, because this will help you during the check phase, where you can script the checking of disk partitioning and cache settings.

Essentials:

  • Segregate disk partitions correctly.
  • Use a good naming standard for volume groups and LVs.
  • Remember the underlying cache settings on those affected disks.

Add Whole New ASE Devices

Follow the usual SAP ASE database practices of adding additional ASE data devices on additional file system partitions sapdata_2, sapdata_3 etc.
Do not be tempted to constantly (or automatically) expand the ASE device on sapdata_1 by adding new disks, you will find this difficult to maintain because striped logical volumes need at least 2 disks in the stripe set.
It will get complicated and is not easy to shrink back from this.

When you add new disks to an existing volume group and then expand an existing lv_sapdata<SID>_n logical volume, it is not as clean as adding a whole new logical volume (e.g. lv_sapdata<SID>_n+1) and then adding a whole new ASE data device.
The old problem of shrinking data devices is more easily solved by being able to drop a whole ASE device, instead of trying to shrink one.

NOTE: The Microsoft notes suggest enabling automatic DB expansion, but on Azure I don’t think it makes sense from a DB administration perspective.
Yes, by adding a new ASE device, as data ages you may end up with “hot” devices, but you can always move specific devices around and add more underlying disks and re-stripe etc. Keep the layout flexible.

Essentials:

  • Add new disks to new logical volumes (sapdata_n+1).
  • Add big whole new ASE devices to the new LVs.

Summary:

We’ve been through each of the layers in detail and now we can summarise as follows:

  • Choose a minimum of Premium SSD.
  • Spread database space requirements over multiple data disks.
  • Correctly set Azure VM disk cache settings on Azure data disks at the point of creation.
  • Use LVM to create volume groups and logical volumes.
  • Stipe the logical volumes with (max) 128KB stripe size & test it.
  • Choose disk file system wisely.
  • Disable write barriers.
  • Segregate disk partitions correctly.
  • Use a good naming standard for volume groups (and LVs).
  • Remember the underlying cache settings on those affected disks.
  • Add new disks to new logical volumes (sapdata_n).
  • Add big whole new ASE devices to the new LVs.

Useful Links:

Is my GCP hosted SLES 12 Linux VM Affected by the BootHole Vulnerability

In an effort to really drag this topic out (it’s now a trilogy), I’ve taken my previous Azure specific post and also the AWS specific post and decided to do some further research into whether the same is true in Google Cloud Platform (a.k.a GCP).

Previously

(If I was writing this like a true screenwriter, it would get shorter and faster each recap).

In July 2020, a GRUB2 bootloader vulnerability was discovered which could allow attackers to replace the bootloader on a machine which has Secure Boot turned on.
The vulnerability is designated CVE-2020-10713 and is rated 8.2 HIGH on the CVSS (see here).

Let’s recap what this is (honestly, please see my Azure post for details, it’s quite technical), and how it impacts a GCP virtual machine running SUSE Enterprise Linux 12, which is commonly used to run SAP systems such as SAP HANA or other SAP products.

What is the Vulnerability?

Essentially, some evil input data can be entered into some part of the GRUB2 program binaries, which is not checked/validated.
By carefully crafting the data that is the overflow, it is possible to cause a specifically targeted memory area to be overwritten.

As described by Eclypsium here (the security company that detected this) “Attackers exploiting this vulnerability can install persistent and stealthy bootkits or malicious bootloaders that could give them near-total control over the victim device“.

Essentially, the vulnerability allows an attacker with root privileges to replace the bootloader with a malicious one.

What is GRUB2?

GRUB2 is v2 of the GRand Unified Bootloader (see here for the manual).
It can be used to load the main operating system of a computer.

What is Secure Boot?

There are commonly two boot methods: “Legacy Boot” and “Secure Boot” (a.k.a UEFI boot).
Until Secure Boot was invented, the bootloader would sit in a designated location on the hard disk and would be executed by the computer BIOS to start the chain of processes for the computer start up.

With Secure Boot, certificates are used to secure the boot process chain.
This BootHole vulnerability means a new CA certificate needs to be implemented in every machine that uses Secure Boot!

But the attackers Need Root?

Yes, the vulnerability is in a GRUB2 configuration text file owned by the root user. Additional text added to the file can cause the buffer overflow.
Anti-virus can’t remove the bootloader if the bootloader boots first and “adjusts” the anti-virus.

NOTE: The flaw also exists if you also use the network boot capability (PXE boot).

What is the Patch?

Due to the complexity of the problem (did you read the prior Eclypsium link?), it needs more than one piece of software to be patched and in different layers of the boot chain.

The vulnerable GRUB2 software needs patching.
To be able to stop the vulnerable version of GRUB2 being re-installed and used, three things need to happen:

  1. The O/S vendor (SUSE) needs to adjust their code (known as the “shim”) so that it no longer trusts the vulnerable version of GRUB2. Again, this is a software patch from the O/S vendor (SUSE) which will need a reboot.
  2. Since someone with root could simply re-install O/S vendor code (the “shim”) that trusts the vulnerable version of GRUB2, the adjusted O/S vendor code will need signing and trusting by the certificates further up the chain.
  3. The revocation list of Secure Boot needs to be adjusted to prevent the vulnerable version of the O/S vendor code (“shim”) from being called during boot. (This is known as the “dbx” (exclusion database), which will need updating with a firmware update).

What is SUSE doing about it?

There needs to be a multi-pronged patching process because SUSE also found some additional bugs during their analysis.

You can see the SUSE page on CVE-2020-10713 here, which includes the mention of the additional bugs.

How does this impact GCP VMs?

In the previous paragraphs we found that a firmware update is needed to update the “dbx” exclusion database.
Since GCP virtual machines are hosted in a KVM based hypervisor, the “firmware” is actually software.

Whilst looking for details on “Secure Boot” in GCP virtual machines, we come across the Google Compute Engine’s “Shielded VM” option.
You can read about it in detail here.
In brief, in GCP a Shielded VM is deployed using a pre-defined set of Google specific guest operating systems:

As noted above, the documentation specifically mentions that the “firmware” underpinning the virtual machine contains Google’s Certificate Authority (CA) certificate, as the root of the trust chain.
This is important because the Eclypsium description of the vulnerability is specifically citing a problem with the Microsoft CA.
What this means is that Google actually decide on the trust chain themselves and can probably more rapidly adjust the firmware with a new CA certificate.
To reiterate, this is specific to Google specific VM images that you deploy as a Shielded VM.

Another point worth noting is that when creating a Shielded VM, you can enable the vTPM (virtual trusted platform module), which allows integrity monitoring of the boot process. Any change to the boot process and a validation alert is triggered. Whilst this would not prevent compromise, it would at least alert an administrator.

Reading the Google infrastructure security document, we find that just like AWS, Google have designed and are implementing their own security chip called Titan, on the physical hosts. This is used to ensure that physical hosts boot securely, but it is not clear if this chip is used in anyway for Shielded VMs booted on the physical host.

If we delve further into the GCP documentation we find that we also have the option to create a custom image for deployment into a Shielded VM.
See the documentation on how to create a custom Shielded VM image:

The above states that you can create your own Secure Boot capable VM image for deployment in GCP as a Shielded VM.
If we read further down that page under section “Default certificates“, we find a slight difference compared to the Google “curated” images:

The above is telling us, by default the standard Microsoft CA certificates are used for the Secure Boot setup of VMs created using a custom image (remember non-custom Secure Boot images use Google’s root CA) in GCP.
When it says “default values”, right now, they are the only values because of a small note further up the page:

OK, so you can only use the defaults for now. The same compromised defaults that will need fixing. 🤷‍♂️

What do we think needs to happen once Google create the ability to replace the certificates?
From reading those previously mentioned documents, I would guess that to rebuild the certificate database used during the creation of the custom Shielded VM image, you are going to need to re-create the VM image and then re-deploy a VM from that image!

The question remains, is SLES 12 supported as a Shielded VM guest-OS on GCP?
According to the Shielded VM page here, it is not by default. You will need to therefore create your own image:

Summary:

The BootHole vulnerability is far reaching and will impact many, many devices (servers, laptops, IoT devices, TVs, fridges, cars?).
However, only those devices that actually *use* Secure Boot will truly be impacted, since the devices not using Secure Boot do not need to be patched (it’s fruitless).

If you run SLES 12 on GCP virtual machines, using public images, then by default you will not being using the Shielded VM instances, so there is no point patching to fix a vulnerability for which you are not affected.
You are only introducing more risk by patching.

If however, you do decide to patch (even if you don’t need to) then follow the advice from SUSE and patch to fix GRUB2, the “shim” and the other vulnerabilities that were found.

On a final closing point, you could be running a custom SLES image deployed in GCP as a Shielded VM. An image that your company has built and which uses Secure Boot. You would be wise to contact your cloud administrators to ensure that they are preparing for a VM rebuild and subsequent patching required to ensure that Secure Boot remains secure.

Useful Links:

Is my AWS hosted SLES 12 Linux VM Affected by the BootHole Vulnerability

In an effort to spin this story out a little further, I’ve taken my previous Azure specific post and decided to do some further research into whether the same is true in Amazon Web Services (a.k.a AWS).

Previously

In July 2020, a GRUB2 bootloader vulnerability was discovered which could allow attackers to replace the bootloader on a machine which has Secure Boot turned on.
The vulnerability is designated CVE-2020-10713 and is rated 8.2 HIGH on the CVSS (see here).

Let’s recap what this is (honestly, please see my other post for details, it’s quite technical), and how it impacts an AWS virtual machine running SUSE Enterprise Linux 12, which is commonly used to run SAP systems such as SAP HANA or other SAP products.

What is the Vulnerability?

Essentially, some evil input data can be entered into some part of the GRUB2 program binaries, which is not checked/validated.
By carefully crafting the data that is the overflow, it is possible to cause a specifically targeted memory area to be overwritten.

As described by Eclypsium here (the security company that detected this) “Attackers exploiting this vulnerability can install persistent and stealthy bootkits or malicious bootloaders that could give them near-total control over the victim device“.

Essentially, the vulnerability allows an attacker with root privileges to replace the bootloader with a malicious one.

What is GRUB2?

GRUB2 is v2 of the GRand Unified Bootloader (see here for the manual).
It can be used to load the main operating system of a computer.

What is Secure Boot?

There are commonly two boot methods: “Legacy Boot” and “Secure Boot” (a.k.a UEFI boot).
Until Secure Boot was invented, the bootloader would sit in a designated location on the hard disk and would be executed by the computer BIOS to start the chain of processes for the computer start up.

With Secure Boot, certificates are used to secure the boot process chain.
This BootHole vulnerability means a new CA certificate needs to be implemented in every machine that uses Secure Boot!

But the attackers Need Root?

Yes, the vulnerability is in a GRUB2 configuration text file owned by the root user. Additional text added to the file can cause the buffer overflow.
Anti-virus can’t remove the bootloader if the bootloader boots first and “adjusts” the anti-virus.

NOTE: The flaw also exists if you also use the network boot capability (PXE boot).

What is the Patch?

Due to the complexity of the problem (did you read the prior Eclypsium link?), it needs more than one piece of software to be patched and in different layers of the boot chain.

The vulnerable GRUB2 software needs patching.
To be able to stop the vulnerable version of GRUB2 being re-installed and used, three things need to happen:

  1. The O/S vendor (SUSE) needs to adjust their code (known as the “shim”) so that it no longer trusts the vulnerable version of GRUB2. Again, this is a software patch from the O/S vendor (SUSE) which will need a reboot.
  2. Since someone with root could simply re-install O/S vendor code (the “shim”) that trusts the vulnerable version of GRUB2, the adjusted O/S vendor code will need signing and trusting by the certificates further up the chain.
  3. The revocation list of Secure Boot needs to be adjusted to prevent the vulnerable version of the O/S vendor code (“shim”) from being called during boot. (This is known as the “dbx” (exclusion database), which will need updating with a firmware update).

What is SUSE doing about it?

There needs to be a multi-pronged patching process because SUSE also found some additional bugs during their analysis.

You can see the SUSE page on CVE-2020-10713 here, which includes the mention of the additional bugs.

How does this impact AWS VMs?

In the previous paragraphs we found that a firmware update is needed to update the “dbx” exclusion database.
Since AWS virtual machines are hosted in a KVM based hypervisor, the “firmware” is actually software.

Whilst looking for details on “Secure Boot” in AWS virtual machines, there is absolutely no mention of it being supported for Linux.
If we dig into the the VM import/export documents here on the AWS docs site, we find:

So the above states that for VMs imported/exported, “UEFI/EFI boot partitions are supported only for Windows boot volumes with VHDX as the image format. Otherwise, a VM’s boot volume must use Master Boot Record (MBR) partitions.“.
The words “…only for Windows…” are the key part of this.
Because if we scan just a little further down the page, it says that the UEFI boot partitions are actually “supported” for Windows, by being converted to MBR (not Secure Boot compatible):

I feel we can surmise that AWS does not support running Linux VMs with Secure Boot.
Apart from this little gem of information here.
This slide shows that the launch of the AWS Graviton2 chip enables ARM based Linux distributions to support Secure Boot.
We can read the Amazon EC2 User Guide here (updated August 28, 2020), to find that SLES 15 is the only SUSE Linux that supports ARM cpus on AWS:

So we know that Secure Boot is not available in AWS on any of the SLES x86 operating systems, and SLES 12 on ARM is not supported on Graviton based cpus.

Summary:

The BootHole vulnerability is far reaching and will impact many, many devices (servers, laptops, IoT devices, TVs, fridges, cars?).
However, only those devices that actually *use* Secure Boot will truly be impacted, since the devices not using Secure Boot do not need to be patched (it’s fruitless).

If you run SLES 12 on AWS virtual machines, you cannot possibly use Secure Boot, so there is no point patching to fix a vulnerability for which you are not affected.
You are only introducing more risk by patching.

If however, you do decide to patch (even if you don’t need to) then follow the advice from SUSE and patch to fix GRUB2, the “shim” and the other vulnerabilities that were found.

If you are running SLES 12 on AWS, then there is no specific order of patching, because you do not use Secure Boot, so there is no possibility of breaking the trust chain that doesn’t exist.

On a final closing point, you could be running a HANA system in AWS on what is known as “Bare Metal” (“High Memory Instances” or a.k.a “*.metal”). These are physical machines using the Nitro based hyper-visor. So whilst EC2 Virtual Machines can’t use Secure Boot, these “Bare Metal” machines may well do so through the use of the Nitro Security Chip (see a good deep dive here). You would be wise to contact your AWS account representative to establish if they will be patching the firmware.

Useful Links: